

Risk assessment of polymer composites containing cellulose nanofibrils (CNF)

Considerations of industrial production

PRESENTED BY

Heli Kangas

Research Team Leader, Project Manager VTT Technical Research Centre of Finland Ltd

Background

- In 2016 Tappi International Conference on Nanotechnology for Renewable Materials we reported results on risk analysis of polymer composites containing CNF, based on the production at laboratory scale
- The risk assessment took into account occupational exposure, consumer exposure and end-of-life.
- The overall conclusion of the risk evaluation was that no major concerns were found in the production, use and waste handling of the composites.

Objective

- The objective of the presentation is to take a step further in the risk assessment of CNF-containing polymer composites
 - By considering their production at small industrial scale
 - Main focus is given to the occupational exposure and exposure to environment during production

Risk assessment based on

 European Commission's Guideline on the protection of the health and safety of workers from the potential risks related to nanomaterials at work

Approach

Risk

_

Exposure

X

Hazard

- 1. Occupational
- 2. Environment
- 3. Consumer use
- 4. End-of-life

Information from the literature

- 1. Human health
- 2. Environment

Hazard

Available information

- Known effects of CNF exposure
 - To humans
 - To environment

Exposure

EU INCOM

Lab scale production @VTT

Industrial production @ small scale

- Resin transfer molding RTM
- Seed moulding compound SCM
- Vacuum injection
- Filament winding

Main exposure routes

- Inhalation exposure
- Skin exposure

Potential occupational exposure – critical points

- Spills during mixing of CNF and polymer
- Pressure in the mould RTM
 - Breakage or leakage of the piping
- Spills during winding
- Machining cutting, sanding etc.
- Mitigation measures
 - Fume hood, fresh air hood

Potential environmental exposure

- Material waste
 - Raw materials
 - Finishing residues incl. dust
- Washing water
 - Containers
 - Floors, surfaces etc.
- Mitigation
 - Minimize raw material waste
 - Re-use of finishing residues
 - Minimize dust in the working space, fume hood
 - Suitable cleaning methods for spills

Additional exposure considerations

- Consumer exposure
 - Depends on the end-use
 - Wear and tear
 - Machining, drilling etc.
- End-of-life
 - Recycling
 - Re-use
 - waste disposal: inceniration, landfill

Conclusions

- No major concern found in industrial production @ small scale
- EU Guideline turned to be a suitable tool for assessing the industrial production of polymer composites containing CNF
- As typical for risk assessment, exposure during the production steps and hazard related to the materials should be evaluated case-by-case
 - Increasing knowledge of hazardous properties and behavior of nanomaterials calls for continual review of the risk assessment and management measures

Acknowledgements

- The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no 608746.
- Co-authors Marja Pitkänen and Lisa Wikström

Thank you! Questions?

PRESENTED BY

Heli Kangas

Research Team Leader, Project Manager VTT Technical Research Centre of Finland Ltd Heli.kangas@vtt.fi

